MakeItFrom.com
Menu (ESC)

AWS E410 vs. C95800 Bronze

AWS E410 belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E410 and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 580
660
Tensile Strength: Yield (Proof), MPa 440
270

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 28
36
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.0
3.4
Embodied Energy, MJ/kg 28
55
Embodied Water, L/kg 100
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 500
310
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
22
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 7.5
9.9
Thermal Shock Resistance, points 16
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 11 to 13.5
0
Copper (Cu), % 0 to 0.75
79 to 83.2
Iron (Fe), % 82.2 to 89
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 0 to 0.7
4.0 to 5.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.9
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5