MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. EN 1.7390 Steel

Both AWS E70C-B2L and EN 1.7390 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is EN 1.7390 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
16
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Tensile Strength: Ultimate (UTS), MPa 580
710
Tensile Strength: Yield (Proof), MPa 460
480

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
4.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.7
Embodied Energy, MJ/kg 22
23
Embodied Water, L/kg 54
69

Common Calculations

PREN (Pitting Resistance) 3.0
6.8
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
100
Resilience: Unit (Modulus of Resilience), kJ/m3 550
600
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 17
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.050
0 to 0.18
Chromium (Cr), % 1.0 to 1.5
4.0 to 6.0
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 95.1 to 98
91.9 to 95.3
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0.4 to 0.65
0.45 to 0.65
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.25 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0