MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. CC760S Brass

AWS E70C-B2L belongs to the iron alloys classification, while CC760S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is CC760S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
22
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 580
180
Tensile Strength: Yield (Proof), MPa 460
80

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
940
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
150
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
40

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 22
43
Embodied Water, L/kg 54
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
33
Resilience: Unit (Modulus of Resilience), kJ/m3 550
29
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
5.8
Strength to Weight: Bending, points 20
8.2
Thermal Diffusivity, mm2/s 11
45
Thermal Shock Resistance, points 17
6.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Arsenic (As), % 0
0.050 to 0.15
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0 to 0.35
83 to 88
Iron (Fe), % 95.1 to 98
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.4 to 1.0
0 to 0.1
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.020
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
10.7 to 17
Residuals, % 0 to 0.5
0