MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. Grade C-5 Titanium

AWS E70C-B2L belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
6.7
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 580
1000
Tensile Strength: Yield (Proof), MPa 460
940

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 39
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 1.6
38
Embodied Energy, MJ/kg 22
610
Embodied Water, L/kg 54
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
66
Resilience: Unit (Modulus of Resilience), kJ/m3 550
4200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
63
Strength to Weight: Bending, points 20
50
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 17
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0 to 0.35
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 95.1 to 98
0 to 0.4
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0 to 0.030
3.5 to 4.5
Residuals, % 0 to 0.5
0 to 0.4