MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. C15100 Copper

AWS E70C-B2L belongs to the iron alloys classification, while C15100 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is C15100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
2.0 to 36
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 580
260 to 470
Tensile Strength: Yield (Proof), MPa 460
69 to 460

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Melting Completion (Liquidus), °C 1460
1100
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
360
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
95
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
95

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 22
43
Embodied Water, L/kg 54
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
9.3 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 550
21 to 890
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
8.1 to 15
Strength to Weight: Bending, points 20
10 to 15
Thermal Diffusivity, mm2/s 11
100
Thermal Shock Resistance, points 17
9.3 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0 to 0.35
99.8 to 99.95
Iron (Fe), % 95.1 to 98
0
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.030
0
Zirconium (Zr), % 0
0.050 to 0.15
Residuals, % 0 to 0.5
0 to 0.1