MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. C18200 Copper

AWS E70C-B2L belongs to the iron alloys classification, while C18200 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is C18200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
11 to 40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 580
310 to 530
Tensile Strength: Yield (Proof), MPa 460
97 to 450

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
320
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
80
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
81

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 22
41
Embodied Water, L/kg 54
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
43 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 550
40 to 860
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
9.6 to 16
Strength to Weight: Bending, points 20
11 to 16
Thermal Diffusivity, mm2/s 11
93
Thermal Shock Resistance, points 17
11 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 1.0 to 1.5
0.6 to 1.2
Copper (Cu), % 0 to 0.35
98.6 to 99.4
Iron (Fe), % 95.1 to 98
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0