MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. C19500 Copper

AWS E70C-B2L belongs to the iron alloys classification, while C19500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is C19500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
2.3 to 38
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 580
380 to 640
Tensile Strength: Yield (Proof), MPa 460
120 to 600

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1090
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 39
200
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
50 to 56
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
50 to 57

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 22
42
Embodied Water, L/kg 54
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
14 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
59 to 1530
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
12 to 20
Strength to Weight: Bending, points 20
13 to 18
Thermal Diffusivity, mm2/s 11
58
Thermal Shock Resistance, points 17
13 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 1.0 to 1.5
0
Cobalt (Co), % 0
0.3 to 1.3
Copper (Cu), % 0 to 0.35
94.9 to 98.6
Iron (Fe), % 95.1 to 98
1.0 to 2.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0.010 to 0.35
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.1 to 1.0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.2