MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. N07750 Nickel

AWS E70C-B2L belongs to the iron alloys classification, while N07750 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
25
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 580
1200
Tensile Strength: Yield (Proof), MPa 460
820

Thermal Properties

Latent Heat of Fusion, J/g 260
310
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 39
13
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
60
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 1.6
10
Embodied Energy, MJ/kg 22
150
Embodied Water, L/kg 54
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
270
Resilience: Unit (Modulus of Resilience), kJ/m3 550
1770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 20
40
Strength to Weight: Bending, points 20
30
Thermal Diffusivity, mm2/s 11
3.3
Thermal Shock Resistance, points 17
36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 1.0 to 1.5
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.35
0 to 0.5
Iron (Fe), % 95.1 to 98
5.0 to 9.0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0