MakeItFrom.com
Menu (ESC)

AWS E70C-B2L vs. S15500 Stainless Steel

Both AWS E70C-B2L and S15500 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E70C-B2L and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
6.8 to 16
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 580
890 to 1490
Tensile Strength: Yield (Proof), MPa 460
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 22
39
Embodied Water, L/kg 54
130

Common Calculations

PREN (Pitting Resistance) 3.0
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 550
890 to 4460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
32 to 53
Strength to Weight: Bending, points 20
26 to 37
Thermal Diffusivity, mm2/s 11
4.6
Thermal Shock Resistance, points 17
30 to 50

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.050
0 to 0.070
Chromium (Cr), % 1.0 to 1.5
14 to 15.5
Copper (Cu), % 0 to 0.35
2.5 to 4.5
Iron (Fe), % 95.1 to 98
71.9 to 79.9
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0