MakeItFrom.com
Menu (ESC)

AWS E80C-B2 vs. C96600 Copper

AWS E80C-B2 belongs to the iron alloys classification, while C96600 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B2 and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 22
7.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
52
Tensile Strength: Ultimate (UTS), MPa 630
760
Tensile Strength: Yield (Proof), MPa 530
480

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Melting Completion (Liquidus), °C 1460
1180
Melting Onset (Solidus), °C 1420
1100
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 39
30
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 3.0
65
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.6
7.0
Embodied Energy, MJ/kg 22
100
Embodied Water, L/kg 53
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
47
Resilience: Unit (Modulus of Resilience), kJ/m3 740
830
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 11
8.4
Thermal Shock Resistance, points 18
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 1.0 to 1.5
0
Copper (Cu), % 0
63.5 to 69.8
Iron (Fe), % 95.3 to 97.9
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.4 to 0.65
0
Nickel (Ni), % 0 to 0.2
29 to 33
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0 to 0.5