MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. EN 1.4806 Stainless Steel

Both AWS E80C-B8 and EN 1.4806 stainless steel are iron alloys. They have 55% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is EN 1.4806 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
6.8
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
75
Tensile Strength: Ultimate (UTS), MPa 620
470
Tensile Strength: Yield (Proof), MPa 540
250

Thermal Properties

Latent Heat of Fusion, J/g 270
320
Melting Completion (Liquidus), °C 1450
1380
Melting Onset (Solidus), °C 1410
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.1
5.4
Embodied Energy, MJ/kg 28
76
Embodied Water, L/kg 89
190

Common Calculations

PREN (Pitting Resistance) 13
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
27
Resilience: Unit (Modulus of Resilience), kJ/m3 740
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
16
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 6.9
3.1
Thermal Shock Resistance, points 17
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0.3 to 0.5
Chromium (Cr), % 8.0 to 10.5
16 to 18
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 85.5 to 90.6
40.4 to 48.7
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.8 to 1.2
0 to 0.5
Nickel (Ni), % 0 to 0.2
34 to 36
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.6
1.0 to 2.5
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0