MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. EN AC-51500 Aluminum

AWS E80C-B8 belongs to the iron alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 19
5.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 620
280
Tensile Strength: Yield (Proof), MPa 540
160

Thermal Properties

Latent Heat of Fusion, J/g 270
430
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 11
88

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.1
9.0
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 89
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
13
Resilience: Unit (Modulus of Resilience), kJ/m3 740
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 22
29
Strength to Weight: Bending, points 21
36
Thermal Diffusivity, mm2/s 6.9
49
Thermal Shock Resistance, points 17
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.35
0 to 0.050
Iron (Fe), % 85.5 to 90.6
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0.4 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
1.8 to 2.6
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0 to 0.5
0 to 0.15