MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. C16500 Copper

AWS E80C-B8 belongs to the iron alloys classification, while C16500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is C16500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19
1.5 to 53
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 620
280 to 530
Tensile Strength: Yield (Proof), MPa 540
97 to 520

Thermal Properties

Latent Heat of Fusion, J/g 270
210
Melting Completion (Liquidus), °C 1450
1070
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 25
250
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
60
Electrical Conductivity: Equal Weight (Specific), % IACS 11
61

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.1
2.6
Embodied Energy, MJ/kg 28
42
Embodied Water, L/kg 89
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
7.8 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 740
41 to 1160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
8.6 to 17
Strength to Weight: Bending, points 21
11 to 16
Thermal Diffusivity, mm2/s 6.9
74
Thermal Shock Resistance, points 17
9.8 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cadmium (Cd), % 0
0.6 to 1.0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.35
97.8 to 98.9
Iron (Fe), % 85.5 to 90.6
0 to 0.020
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.5 to 0.7
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0 to 0.5