MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. C61000 Bronze

AWS E80C-B8 belongs to the iron alloys classification, while C61000 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is C61000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19
29 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 620
390 to 460
Tensile Strength: Yield (Proof), MPa 540
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1410
990
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 25
69
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
15
Electrical Conductivity: Equal Weight (Specific), % IACS 11
16

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.1
3.0
Embodied Energy, MJ/kg 28
49
Embodied Water, L/kg 89
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 740
100 to 160
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
13 to 15
Strength to Weight: Bending, points 21
14 to 16
Thermal Diffusivity, mm2/s 6.9
19
Thermal Shock Resistance, points 17
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
6.0 to 8.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.35
90.2 to 94
Iron (Fe), % 85.5 to 90.6
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.5