MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. C67500 Bronze

AWS E80C-B8 belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 19
14 to 33
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 620
430 to 580
Tensile Strength: Yield (Proof), MPa 540
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Melting Completion (Liquidus), °C 1450
890
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 25
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
24
Electrical Conductivity: Equal Weight (Specific), % IACS 11
27

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.1
2.8
Embodied Energy, MJ/kg 28
47
Embodied Water, L/kg 89
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 740
130 to 650
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
15 to 20
Strength to Weight: Bending, points 21
16 to 19
Thermal Diffusivity, mm2/s 6.9
34
Thermal Shock Resistance, points 17
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.35
57 to 60
Iron (Fe), % 85.5 to 90.6
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.4 to 1.0
0.050 to 0.5
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.5 to 1.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0 to 0.5
0 to 0.5