MakeItFrom.com
Menu (ESC)

AWS E80C-B8 vs. C82800 Copper

AWS E80C-B8 belongs to the iron alloys classification, while C82800 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-B8 and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
46
Tensile Strength: Ultimate (UTS), MPa 620
670 to 1140
Tensile Strength: Yield (Proof), MPa 540
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 270
240
Melting Completion (Liquidus), °C 1450
930
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.1
18
Electrical Conductivity: Equal Weight (Specific), % IACS 11
19

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.1
12
Embodied Energy, MJ/kg 28
190
Embodied Water, L/kg 89
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 740
590 to 4080
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
21 to 36
Strength to Weight: Bending, points 21
20 to 28
Thermal Diffusivity, mm2/s 6.9
36
Thermal Shock Resistance, points 17
23 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.5 to 2.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 8.0 to 10.5
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0 to 0.35
94.6 to 97.2
Iron (Fe), % 85.5 to 90.6
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0.8 to 1.2
0
Nickel (Ni), % 0 to 0.2
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0.2 to 0.35
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5