MakeItFrom.com
Menu (ESC)

AWS E80C-Ni1 vs. C69710 Brass

AWS E80C-Ni1 belongs to the iron alloys classification, while C69710 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E80C-Ni1 and the bottom bar is C69710 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 27
25
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 620
470
Tensile Strength: Yield (Proof), MPa 540
230

Thermal Properties

Latent Heat of Fusion, J/g 250
240
Melting Completion (Liquidus), °C 1460
930
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 40
40
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
26
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 21
44
Embodied Water, L/kg 49
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
99
Resilience: Unit (Modulus of Resilience), kJ/m3 770
250
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22
16
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 18
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.12
0
Copper (Cu), % 0 to 0.35
75 to 80
Iron (Fe), % 95.1 to 99.2
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 1.5
0 to 0.4
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 0.8 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.9
2.5 to 3.5
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
13.8 to 22
Residuals, % 0 to 0.5
0 to 0.5