MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. EN 1.4508 Stainless Steel

Both AWS E90C-B3 and EN 1.4508 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is EN 1.4508 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 710
570
Tensile Strength: Yield (Proof), MPa 600
260

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
15
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
20
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
4.0
Embodied Energy, MJ/kg 24
55
Embodied Water, L/kg 59
160

Common Calculations

PREN (Pitting Resistance) 5.7
32
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
160
Resilience: Unit (Modulus of Resilience), kJ/m3 970
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 11
4.1
Thermal Shock Resistance, points 21
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0.050 to 0.12
0 to 0.030
Chromium (Cr), % 2.0 to 2.5
18 to 20
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.4 to 96.4
61.2 to 69.9
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.2
3.0 to 3.5
Nickel (Ni), % 0 to 0.2
9.0 to 12
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.25 to 0.6
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0