MakeItFrom.com
Menu (ESC)

AWS E90C-B3 vs. C62500 Bronze

AWS E90C-B3 belongs to the iron alloys classification, while C62500 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-B3 and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 19
1.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 710
690
Tensile Strength: Yield (Proof), MPa 600
410

Thermal Properties

Latent Heat of Fusion, J/g 260
230
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 41
47
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
11

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
26
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.8
3.3
Embodied Energy, MJ/kg 24
55
Embodied Water, L/kg 59
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 970
750
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 21
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
12.5 to 13.5
Carbon (C), % 0.050 to 0.12
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0 to 0.35
78.5 to 84
Iron (Fe), % 93.4 to 96.4
3.5 to 5.5
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.25 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0 to 0.030
0
Residuals, % 0 to 0.5
0 to 0.5