MakeItFrom.com
Menu (ESC)

AWS E90C-K3 vs. CC753S Brass

AWS E90C-K3 belongs to the iron alloys classification, while CC753S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E90C-K3 and the bottom bar is CC753S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 55
17
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 710
340
Tensile Strength: Yield (Proof), MPa 600
170

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Melting Completion (Liquidus), °C 1460
820
Melting Onset (Solidus), °C 1410
780
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 48
99
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 9.0
29

Otherwise Unclassified Properties

Base Metal Price, % relative 3.4
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 23
47
Embodied Water, L/kg 53
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 370
47
Resilience: Unit (Modulus of Resilience), kJ/m3 980
140
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 25
12
Strength to Weight: Bending, points 22
13
Thermal Diffusivity, mm2/s 13
32
Thermal Shock Resistance, points 21
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 0.8
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.35
56.8 to 60.5
Iron (Fe), % 92.6 to 98.5
0.5 to 0.8
Lead (Pb), % 0
1.8 to 2.5
Manganese (Mn), % 0.75 to 2.3
0 to 0.2
Molybdenum (Mo), % 0.25 to 0.65
0
Nickel (Ni), % 0.5 to 2.5
0.5 to 1.2
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.050
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.8
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
33.1 to 40
Residuals, % 0 to 0.5
0