MakeItFrom.com
Menu (ESC)

AWS ENiCrFe-2 vs. Grade 250 Maraging Steel

AWS ENiCrFe-2 belongs to the nickel alloys classification, while grade 250 maraging steel belongs to the iron alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ENiCrFe-2 and the bottom bar is grade 250 maraging steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
7.3 to 17
Poisson's Ratio 0.3
0.3
Shear Modulus, GPa 74
75
Tensile Strength: Ultimate (UTS), MPa 790
970 to 1800

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Melting Completion (Liquidus), °C 1390
1480
Melting Onset (Solidus), °C 1350
1430
Specific Heat Capacity, J/kg-K 450
450
Thermal Expansion, µm/m-K 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 65
32
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 11
4.9
Embodied Energy, MJ/kg 160
65
Embodied Water, L/kg 260
140

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
23
Strength to Weight: Axial, points 26
33 to 61
Strength to Weight: Bending, points 22
26 to 40
Thermal Shock Resistance, points 24
29 to 54

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.050 to 0.15
Boron (B), % 0
0 to 0.0030
Calcium (Ca), % 0
0 to 0.050
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 13 to 17
0
Cobalt (Co), % 0 to 0.12
7.0 to 8.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 12
66.3 to 71.1
Manganese (Mn), % 1.0 to 3.5
0 to 0.1
Molybdenum (Mo), % 0.5 to 2.5
4.6 to 5.2
Nickel (Ni), % 62 to 85
17 to 19
Niobium (Nb), % 0.5 to 4.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 0.75
0 to 0.1
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0.3 to 0.5
Zirconium (Zr), % 0
0 to 0.020
Residuals, % 0 to 0.5
0