MakeItFrom.com
Menu (ESC)

AWS ER110S-1 vs. S66286 Stainless Steel

Both AWS ER110S-1 and S66286 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER110S-1 and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
17 to 40
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 870
620 to 1020
Tensile Strength: Yield (Proof), MPa 740
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 47
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.0
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
6.0
Embodied Energy, MJ/kg 25
87
Embodied Water, L/kg 55
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 1460
190 to 1150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 31
22 to 36
Strength to Weight: Bending, points 26
20 to 28
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 26
13 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.1
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.090
0 to 0.080
Chromium (Cr), % 0 to 0.5
13.5 to 16
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 92.8 to 96.3
49.1 to 59.5
Manganese (Mn), % 1.4 to 1.8
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.55
1.0 to 1.5
Nickel (Ni), % 1.9 to 2.6
24 to 27
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.2 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.1
1.9 to 2.4
Vanadium (V), % 0 to 0.040
0.1 to 0.5
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.5
0