MakeItFrom.com
Menu (ESC)

AWS ER80S-B3L vs. C81400 Copper

AWS ER80S-B3L belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-B3L and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
41
Tensile Strength: Ultimate (UTS), MPa 630
370
Tensile Strength: Yield (Proof), MPa 530
250

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
60
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
61

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 60
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
36
Resilience: Unit (Modulus of Resilience), kJ/m3 730
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22
11
Strength to Weight: Bending, points 21
13
Thermal Diffusivity, mm2/s 11
75
Thermal Shock Resistance, points 18
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.3 to 2.7
0.6 to 1.0
Copper (Cu), % 0 to 0.35
98.4 to 99.38
Iron (Fe), % 93.6 to 96
0
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
0
Sulfur (S), % 0 to 0.025
0
Residuals, % 0 to 0.5
0 to 0.5