MakeItFrom.com
Menu (ESC)

AWS ER80S-B3L vs. N06200 Nickel

AWS ER80S-B3L belongs to the iron alloys classification, while N06200 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER80S-B3L and the bottom bar is N06200 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Elongation at Break, % 19
51
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
84
Tensile Strength: Ultimate (UTS), MPa 630
780
Tensile Strength: Yield (Proof), MPa 530
320

Thermal Properties

Latent Heat of Fusion, J/g 260
330
Melting Completion (Liquidus), °C 1460
1500
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 41
9.1
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
65
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.8
12
Embodied Energy, MJ/kg 23
160
Embodied Water, L/kg 60
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
320
Resilience: Unit (Modulus of Resilience), kJ/m3 730
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 11
2.4
Thermal Shock Resistance, points 18
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.050
0 to 0.010
Chromium (Cr), % 2.3 to 2.7
22 to 24
Cobalt (Co), % 0
0 to 2.0
Copper (Cu), % 0 to 0.35
1.3 to 1.9
Iron (Fe), % 93.6 to 96
0 to 3.0
Manganese (Mn), % 0.4 to 0.7
0 to 0.010
Molybdenum (Mo), % 0.9 to 1.2
15 to 17
Nickel (Ni), % 0 to 0.2
51 to 61.7
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0.4 to 0.7
0 to 0.080
Sulfur (S), % 0 to 0.025
0 to 0.010
Residuals, % 0 to 0.5
0