MakeItFrom.com
Menu (ESC)

AWS ER90S-B3 vs. ASTM A182 Grade F92

Both AWS ER90S-B3 and ASTM A182 grade F92 are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B3 and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
22
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Tensile Strength: Ultimate (UTS), MPa 690
690
Tensile Strength: Yield (Proof), MPa 620
500

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 24
40
Embodied Water, L/kg 60
89

Common Calculations

PREN (Pitting Resistance) 6.0
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 20
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.070 to 0.12
0.070 to 0.13
Chromium (Cr), % 2.3 to 2.7
8.5 to 9.5
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 93.5 to 95.9
85.8 to 89.1
Manganese (Mn), % 0.4 to 0.7
0.3 to 0.6
Molybdenum (Mo), % 0.9 to 1.2
0.3 to 0.6
Nickel (Ni), % 0 to 0.2
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0.4 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0