MakeItFrom.com
Menu (ESC)

AWS ER90S-B3 vs. C64700 Bronze

AWS ER90S-B3 belongs to the iron alloys classification, while C64700 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B3 and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 19
9.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
44
Tensile Strength: Ultimate (UTS), MPa 690
660
Tensile Strength: Yield (Proof), MPa 620
560

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
210
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
38

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 24
43
Embodied Water, L/kg 60
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
57
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
1370
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 11
59
Thermal Shock Resistance, points 20
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0.070 to 0.12
0
Chromium (Cr), % 2.3 to 2.7
0
Copper (Cu), % 0 to 0.35
95.8 to 98
Iron (Fe), % 93.5 to 95.9
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.9 to 1.2
0
Nickel (Ni), % 0 to 0.2
1.6 to 2.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.4 to 0.7
0.4 to 0.8
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.5