MakeItFrom.com
Menu (ESC)

AWS ER90S-B3 vs. N08904 Stainless Steel

Both AWS ER90S-B3 and N08904 stainless steel are iron alloys. They have 51% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B3 and the bottom bar is N08904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
38
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Tensile Strength: Ultimate (UTS), MPa 690
540
Tensile Strength: Yield (Proof), MPa 620
240

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
32
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.8
5.8
Embodied Energy, MJ/kg 24
79
Embodied Water, L/kg 60
200

Common Calculations

PREN (Pitting Resistance) 6.0
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 11
3.1
Thermal Shock Resistance, points 20
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0.070 to 0.12
0 to 0.020
Chromium (Cr), % 2.3 to 2.7
19 to 23
Copper (Cu), % 0 to 0.35
1.0 to 2.0
Iron (Fe), % 93.5 to 95.9
38.8 to 53
Manganese (Mn), % 0.4 to 0.7
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.2
4.0 to 5.0
Nickel (Ni), % 0 to 0.2
23 to 28
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0.4 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.035
Residuals, % 0 to 0.5
0