MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. ACI-ASTM CE8MN Steel

Both AWS ER90S-B9 and ACI-ASTM CE8MN steel are iron alloys. They have 73% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is ACI-ASTM CE8MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18
29
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
80
Tensile Strength: Ultimate (UTS), MPa 690
750
Tensile Strength: Yield (Proof), MPa 470
500

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
4.2
Embodied Energy, MJ/kg 37
58
Embodied Water, L/kg 91
180

Common Calculations

PREN (Pitting Resistance) 13
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 570
620
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
27
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 6.9
4.2
Thermal Shock Resistance, points 19
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.070 to 0.13
0 to 0.080
Chromium (Cr), % 8.0 to 10.5
22.5 to 25.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 84.4 to 90.7
56 to 66.4
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 0.85 to 1.2
3.0 to 4.5
Nickel (Ni), % 0 to 0.8
8.0 to 11
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0.1 to 0.3
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.15 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.010
0 to 0.040
Vanadium (V), % 0.15 to 0.3
0
Residuals, % 0 to 0.5
0