MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. ASTM B817 Type I

AWS ER90S-B9 belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 18
4.0 to 13
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 690
770 to 960
Tensile Strength: Yield (Proof), MPa 470
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Melting Completion (Liquidus), °C 1450
1600
Melting Onset (Solidus), °C 1410
1550
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 25
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 37
610
Embodied Water, L/kg 91
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 570
2310 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
48 to 60
Strength to Weight: Bending, points 22
42 to 49
Thermal Diffusivity, mm2/s 6.9
2.9
Thermal Shock Resistance, points 19
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.040
5.5 to 6.8
Carbon (C), % 0.070 to 0.13
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 84.4 to 90.7
0 to 0.4
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0.15 to 0.3
3.5 to 4.5
Residuals, % 0 to 0.5
0 to 0.4