MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. EN AC-43200 Aluminum

AWS ER90S-B9 belongs to the iron alloys classification, while EN AC-43200 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 18
1.1
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 690
190 to 260
Tensile Strength: Yield (Proof), MPa 470
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 270
540
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 25
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
120

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.6
7.8
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 91
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 570
66 to 330
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 25
20 to 28
Strength to Weight: Bending, points 22
28 to 35
Thermal Diffusivity, mm2/s 6.9
59
Thermal Shock Resistance, points 19
8.8 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.040
86.1 to 90.8
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 84.4 to 90.7
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 1.2
0 to 0.55
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
0 to 0.15
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
9.0 to 11
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0 to 0.5
0 to 0.15