MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. C75400 Nickel Silver

AWS ER90S-B9 belongs to the iron alloys classification, while C75400 nickel silver belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is C75400 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18
2.0 to 43
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
46
Tensile Strength: Ultimate (UTS), MPa 690
370 to 630
Tensile Strength: Yield (Proof), MPa 470
130 to 590

Thermal Properties

Latent Heat of Fusion, J/g 270
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 25
36
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
7.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
32
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.6
3.8
Embodied Energy, MJ/kg 37
59
Embodied Water, L/kg 91
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
12 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 570
75 to 1450
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
12 to 21
Strength to Weight: Bending, points 22
13 to 19
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 19
12 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.070 to 0.13
0
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
63.5 to 66.5
Iron (Fe), % 84.4 to 90.7
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.2
0 to 0.5
Molybdenum (Mo), % 0.85 to 1.2
0
Nickel (Ni), % 0 to 0.8
14 to 16
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
16.2 to 22.5
Residuals, % 0 to 0.5
0 to 0.5