MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. R30155 Cobalt

Both AWS ER90S-B9 and R30155 cobalt are iron alloys. They have 42% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 18
34
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
81
Tensile Strength: Ultimate (UTS), MPa 690
850
Tensile Strength: Yield (Proof), MPa 470
390

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 25
12
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
80
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.6
9.7
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 91
300

Common Calculations

PREN (Pitting Resistance) 13
37
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 570
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 25
28
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 6.9
3.2
Thermal Shock Resistance, points 19
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.070 to 0.13
0.080 to 0.16
Chromium (Cr), % 8.0 to 10.5
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 84.4 to 90.7
24.3 to 36.2
Manganese (Mn), % 0 to 1.2
1.0 to 2.0
Molybdenum (Mo), % 0.85 to 1.2
2.5 to 3.5
Nickel (Ni), % 0 to 0.8
19 to 21
Niobium (Nb), % 0.020 to 0.1
0.75 to 1.3
Nitrogen (N), % 0.030 to 0.070
0 to 0.2
Phosphorus (P), % 0 to 0.010
0 to 0.040
Silicon (Si), % 0.15 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0
Vanadium (V), % 0.15 to 0.3
0
Residuals, % 0 to 0.5
0