MakeItFrom.com
Menu (ESC)

AWS ER90S-B9 vs. R58150 Titanium

AWS ER90S-B9 belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS ER90S-B9 and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 18
13
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
52
Tensile Strength: Ultimate (UTS), MPa 690
770
Tensile Strength: Yield (Proof), MPa 470
550

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Melting Completion (Liquidus), °C 1450
1760
Melting Onset (Solidus), °C 1410
1700
Specific Heat Capacity, J/kg-K 470
500
Thermal Expansion, µm/m-K 13
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
48
Density, g/cm3 7.8
5.4
Embodied Carbon, kg CO2/kg material 2.6
31
Embodied Energy, MJ/kg 37
480
Embodied Water, L/kg 91
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
94
Resilience: Unit (Modulus of Resilience), kJ/m3 570
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 25
40
Strength to Weight: Bending, points 22
35
Thermal Shock Resistance, points 19
48

Alloy Composition

Aluminum (Al), % 0 to 0.040
0
Carbon (C), % 0.070 to 0.13
0 to 0.1
Chromium (Cr), % 8.0 to 10.5
0
Copper (Cu), % 0 to 0.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 84.4 to 90.7
0 to 0.1
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0.85 to 1.2
14 to 16
Nickel (Ni), % 0 to 0.8
0
Niobium (Nb), % 0.020 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0.15 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
83.5 to 86
Vanadium (V), % 0.15 to 0.3
0
Residuals, % 0 to 0.5
0