MakeItFrom.com
Menu (ESC)

AWS ERNiCr-3 vs. S17600 Stainless Steel

AWS ERNiCr-3 belongs to the nickel alloys classification, while S17600 stainless steel belongs to the iron alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.

For each property being compared, the top bar is AWS ERNiCr-3 and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 34
8.6 to 11
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
76
Tensile Strength: Ultimate (UTS), MPa 630
940 to 1490

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Melting Completion (Liquidus), °C 1380
1430
Melting Onset (Solidus), °C 1330
1390
Specific Heat Capacity, J/kg-K 460
480
Thermal Expansion, µm/m-K 13
11

Otherwise Unclassified Properties

Base Metal Price, % relative 70
13
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 11
2.9
Embodied Energy, MJ/kg 160
42
Embodied Water, L/kg 280
130

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 21
34 to 54
Strength to Weight: Bending, points 19
28 to 37
Thermal Shock Resistance, points 18
31 to 50

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 18 to 22
16 to 17.5
Cobalt (Co), % 0 to 0.12
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 0 to 3.0
71.3 to 77.6
Manganese (Mn), % 2.5 to 3.5
0 to 1.0
Nickel (Ni), % 67 to 77.5
6.0 to 7.5
Niobium (Nb), % 2.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.75
0.4 to 1.2
Residuals, % 0 to 0.5
0