MakeItFrom.com
Menu (ESC)

AWS ERTi-5 vs. AISI 201LN Stainless Steel

AWS ERTi-5 belongs to the titanium alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-5 and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 10
25 to 51
Fatigue Strength, MPa 470
340 to 540
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 900
740 to 1060
Tensile Strength: Yield (Proof), MPa 830
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
880
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 4.4
7.7
Embodied Carbon, kg CO2/kg material 38
2.6
Embodied Energy, MJ/kg 610
38
Embodied Water, L/kg 200
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 3250
310 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 56
27 to 38
Strength to Weight: Bending, points 46
24 to 30
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 63
16 to 23

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.050
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.22
67.9 to 73.5
Manganese (Mn), % 0
6.4 to 7.5
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0 to 0.030
0.1 to 0.25
Oxygen (O), % 0.12 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 88.2 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0