MakeItFrom.com
Menu (ESC)

AWS ERTi-5 vs. C62300 Bronze

AWS ERTi-5 belongs to the titanium alloys classification, while C62300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-5 and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 10
18 to 32
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 900
570 to 630
Tensile Strength: Yield (Proof), MPa 830
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1610
1050
Melting Onset (Solidus), °C 1560
1040
Specific Heat Capacity, J/kg-K 560
440
Thermal Conductivity, W/m-K 7.1
54
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
13

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 4.4
8.3
Embodied Carbon, kg CO2/kg material 38
3.1
Embodied Energy, MJ/kg 610
52
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 87
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 3250
240 to 430
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 56
19 to 21
Strength to Weight: Bending, points 46
18 to 20
Thermal Diffusivity, mm2/s 2.9
15
Thermal Shock Resistance, points 63
20 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.8
8.5 to 10
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0
83.2 to 89.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.22
2.0 to 4.0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0.12 to 0.2
0
Silicon (Si), % 0
0 to 0.25
Tin (Sn), % 0
0 to 0.6
Titanium (Ti), % 88.2 to 90.9
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0
0 to 0.5