MakeItFrom.com
Menu (ESC)

AWS ERTi-7 vs. 1350 Aluminum

AWS ERTi-7 belongs to the titanium alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AWS ERTi-7 and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 20
1.4 to 30
Fatigue Strength, MPa 190
24 to 50
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 340
68 to 190
Tensile Strength: Yield (Proof), MPa 280
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1670
660
Melting Onset (Solidus), °C 1620
650
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
230
Thermal Expansion, µm/m-K 8.7
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
61 to 62
Electrical Conductivity: Equal Weight (Specific), % IACS 7.3
200 to 210

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 47
8.3
Embodied Energy, MJ/kg 800
160
Embodied Water, L/kg 470
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 64
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 360
4.4 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 21
7.0 to 19
Strength to Weight: Bending, points 24
14 to 27
Thermal Diffusivity, mm2/s 8.8
96
Thermal Shock Resistance, points 26
3.0 to 8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
99.5 to 100
Boron (B), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 0
0 to 0.010
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Hydrogen (H), % 0 to 0.0080
0
Iron (Fe), % 0 to 0.12
0 to 0.4
Manganese (Mn), % 0
0 to 0.010
Nitrogen (N), % 0 to 0.015
0
Oxygen (O), % 0.080 to 0.16
0
Palladium (Pd), % 0.12 to 0.25
0
Silicon (Si), % 0
0 to 0.1
Titanium (Ti), % 99.417 to 99.8
0 to 0.020
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1