MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. N06210 Nickel

AZ31B magnesium belongs to the magnesium alloys classification, while N06210 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
220
Elongation at Break, % 5.6 to 12
51
Fatigue Strength, MPa 100 to 120
320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
85
Shear Strength, MPa 130 to 160
560
Tensile Strength: Ultimate (UTS), MPa 240 to 270
780
Tensile Strength: Yield (Proof), MPa 120 to 180
350

Thermal Properties

Latent Heat of Fusion, J/g 350
330
Maximum Temperature: Mechanical, °C 150
980
Melting Completion (Liquidus), °C 600
1570
Melting Onset (Solidus), °C 600
1510
Specific Heat Capacity, J/kg-K 990
420
Thermal Expansion, µm/m-K 26
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
85
Density, g/cm3 1.7
9.0
Embodied Carbon, kg CO2/kg material 23
17
Embodied Energy, MJ/kg 160
250
Embodied Water, L/kg 970
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 25
320
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
22
Strength to Weight: Axial, points 39 to 44
24
Strength to Weight: Bending, points 50 to 55
21
Thermal Shock Resistance, points 14 to 16
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.4 to 3.6
0
Calcium (Ca), % 0 to 0.040
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.050
0 to 1.0
Magnesium (Mg), % 93.6 to 97.1
0
Manganese (Mn), % 0.050 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0 to 0.0050
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0