MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. S30601 Stainless Steel

AZ31B magnesium belongs to the magnesium alloys classification, while S30601 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is S30601 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 5.6 to 12
37
Fatigue Strength, MPa 100 to 120
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
75
Shear Strength, MPa 130 to 160
450
Tensile Strength: Ultimate (UTS), MPa 240 to 270
660
Tensile Strength: Yield (Proof), MPa 120 to 180
300

Thermal Properties

Latent Heat of Fusion, J/g 350
370
Maximum Temperature: Mechanical, °C 150
950
Melting Completion (Liquidus), °C 600
1360
Melting Onset (Solidus), °C 600
1310
Specific Heat Capacity, J/kg-K 990
500
Thermal Expansion, µm/m-K 26
15

Otherwise Unclassified Properties

Base Metal Price, % relative 12
20
Density, g/cm3 1.7
7.6
Embodied Carbon, kg CO2/kg material 23
3.9
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 970
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 25
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 39 to 44
24
Strength to Weight: Bending, points 50 to 55
22
Thermal Shock Resistance, points 14 to 16
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.4 to 3.6
0
Calcium (Ca), % 0 to 0.040
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0 to 0.050
0 to 0.35
Iron (Fe), % 0 to 0.050
56.9 to 60.5
Magnesium (Mg), % 93.6 to 97.1
0
Manganese (Mn), % 0.050 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.0050
17 to 18
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
5.0 to 5.6
Sulfur (S), % 0
0 to 0.013
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0