MakeItFrom.com
Menu (ESC)

AZ31B Magnesium vs. S31727 Stainless Steel

AZ31B magnesium belongs to the magnesium alloys classification, while S31727 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ31B magnesium and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 5.6 to 12
40
Fatigue Strength, MPa 100 to 120
240
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
78
Shear Strength, MPa 130 to 160
430
Tensile Strength: Ultimate (UTS), MPa 240 to 270
630
Tensile Strength: Yield (Proof), MPa 120 to 180
270

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 150
1010
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 600
1390
Specific Heat Capacity, J/kg-K 990
470
Thermal Expansion, µm/m-K 26
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
24
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 23
4.7
Embodied Energy, MJ/kg 160
64
Embodied Water, L/kg 970
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 25
200
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 370
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
24
Strength to Weight: Axial, points 39 to 44
22
Strength to Weight: Bending, points 50 to 55
20
Thermal Shock Resistance, points 14 to 16
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.4 to 3.6
0
Calcium (Ca), % 0 to 0.040
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19
Copper (Cu), % 0 to 0.050
2.8 to 4.0
Iron (Fe), % 0 to 0.050
53.7 to 61.3
Magnesium (Mg), % 93.6 to 97.1
0
Manganese (Mn), % 0.050 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.8 to 4.5
Nickel (Ni), % 0 to 0.0050
14.5 to 16.5
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.5 to 1.5
0
Residuals, % 0 to 0.3
0