MakeItFrom.com
Menu (ESC)

AZ80A Magnesium vs. ACI-ASTM CE3MN Steel

AZ80A magnesium belongs to the magnesium alloys classification, while ACI-ASTM CE3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ80A magnesium and the bottom bar is ACI-ASTM CE3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 3.9 to 8.5
20
Fatigue Strength, MPa 140 to 170
380
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
81
Tensile Strength: Ultimate (UTS), MPa 320 to 340
770
Tensile Strength: Yield (Proof), MPa 210 to 230
590

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 490
1410
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 77
15
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
4.2
Embodied Energy, MJ/kg 160
58
Embodied Water, L/kg 990
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 24
140
Resilience: Unit (Modulus of Resilience), kJ/m3 500 to 600
840
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 51 to 55
27
Strength to Weight: Bending, points 60 to 63
24
Thermal Diffusivity, mm2/s 45
4.1
Thermal Shock Resistance, points 19 to 20
21

Alloy Composition

Aluminum (Al), % 7.8 to 9.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.0050
58.1 to 65.9
Magnesium (Mg), % 89 to 91.9
0
Manganese (Mn), % 0.12 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.0050
6.0 to 8.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0.2 to 0.8
0
Residuals, % 0 to 0.3
0