MakeItFrom.com
Menu (ESC)

AZ81A Magnesium vs. 308.0 Aluminum

AZ81A magnesium belongs to the magnesium alloys classification, while 308.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ81A magnesium and the bottom bar is 308.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
70
Elastic (Young's, Tensile) Modulus, GPa 46
73
Elongation at Break, % 3.0 to 8.8
2.0
Fatigue Strength, MPa 78 to 80
89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
27
Shear Strength, MPa 91 to 130
150
Tensile Strength: Ultimate (UTS), MPa 160 to 240
190
Tensile Strength: Yield (Proof), MPa 84
110

Thermal Properties

Latent Heat of Fusion, J/g 350
470
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
620
Melting Onset (Solidus), °C 500
540
Specific Heat Capacity, J/kg-K 990
870
Thermal Conductivity, W/m-K 84
140
Thermal Expansion, µm/m-K 27
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
37
Electrical Conductivity: Equal Weight (Specific), % IACS 65
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 1.7
2.9
Embodied Carbon, kg CO2/kg material 23
7.7
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 990
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 17
3.3
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 78
83
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
47
Strength to Weight: Axial, points 26 to 39
18
Strength to Weight: Bending, points 38 to 50
25
Thermal Diffusivity, mm2/s 50
55
Thermal Shock Resistance, points 9.1 to 14
9.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.1
85.7 to 91
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0
0 to 1.0
Magnesium (Mg), % 89.8 to 92.5
0 to 0.1
Manganese (Mn), % 0.13 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.010
0
Silicon (Si), % 0 to 0.3
5.0 to 6.0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.4 to 1.0
0 to 1.0
Residuals, % 0 to 0.3
0 to 0.5