MakeItFrom.com
Menu (ESC)

AZ81A Magnesium vs. 7050 Aluminum

AZ81A magnesium belongs to the magnesium alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ81A magnesium and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
70
Elongation at Break, % 3.0 to 8.8
2.2 to 12
Fatigue Strength, MPa 78 to 80
130 to 210
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 18
26
Shear Strength, MPa 91 to 130
280 to 330
Tensile Strength: Ultimate (UTS), MPa 160 to 240
490 to 570
Tensile Strength: Yield (Proof), MPa 84
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 350
370
Maximum Temperature: Mechanical, °C 130
190
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 500
490
Specific Heat Capacity, J/kg-K 990
860
Thermal Conductivity, W/m-K 84
140
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
35
Electrical Conductivity: Equal Weight (Specific), % IACS 65
100

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 1.7
3.1
Embodied Carbon, kg CO2/kg material 23
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 990
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 17
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 78
1110 to 1760
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 70
45
Strength to Weight: Axial, points 26 to 39
45 to 51
Strength to Weight: Bending, points 38 to 50
45 to 50
Thermal Diffusivity, mm2/s 50
54
Thermal Shock Resistance, points 9.1 to 14
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.1
87.3 to 92.1
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 0 to 0.1
2.0 to 2.6
Iron (Fe), % 0
0 to 0.15
Magnesium (Mg), % 89.8 to 92.5
1.9 to 2.6
Manganese (Mn), % 0.13 to 0.35
0 to 0.1
Nickel (Ni), % 0 to 0.010
0
Silicon (Si), % 0 to 0.3
0 to 0.12
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0.4 to 1.0
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0 to 0.3
0 to 0.15