MakeItFrom.com
Menu (ESC)

AZ81A Magnesium vs. EN AC-45100 Aluminum

AZ81A magnesium belongs to the magnesium alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ81A magnesium and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
97 to 130
Elastic (Young's, Tensile) Modulus, GPa 46
72
Elongation at Break, % 3.0 to 8.8
1.0 to 2.8
Fatigue Strength, MPa 78 to 80
82 to 99
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
27
Tensile Strength: Ultimate (UTS), MPa 160 to 240
300 to 360
Tensile Strength: Yield (Proof), MPa 84
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 350
470
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
630
Melting Onset (Solidus), °C 500
550
Specific Heat Capacity, J/kg-K 990
890
Thermal Conductivity, W/m-K 84
140
Thermal Expansion, µm/m-K 27
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
30
Electrical Conductivity: Equal Weight (Specific), % IACS 65
95

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 1.7
2.8
Embodied Carbon, kg CO2/kg material 23
7.9
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 990
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 17
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 78
290 to 710
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
49
Strength to Weight: Axial, points 26 to 39
30 to 35
Strength to Weight: Bending, points 38 to 50
35 to 39
Thermal Diffusivity, mm2/s 50
54
Thermal Shock Resistance, points 9.1 to 14
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.1
88 to 92.8
Copper (Cu), % 0 to 0.1
2.6 to 3.6
Iron (Fe), % 0
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 89.8 to 92.5
0.15 to 0.45
Manganese (Mn), % 0.13 to 0.35
0 to 0.55
Nickel (Ni), % 0 to 0.010
0 to 0.1
Silicon (Si), % 0 to 0.3
4.5 to 6.0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.4 to 1.0
0 to 0.2
Residuals, % 0 to 0.3
0 to 0.15

Comparable Variants