MakeItFrom.com
Menu (ESC)

AZ81A Magnesium vs. EN AC-48100 Aluminum

AZ81A magnesium belongs to the magnesium alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ81A magnesium and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
100 to 140
Elastic (Young's, Tensile) Modulus, GPa 46
76
Elongation at Break, % 3.0 to 8.8
1.1
Fatigue Strength, MPa 78 to 80
120 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
29
Tensile Strength: Ultimate (UTS), MPa 160 to 240
240 to 330
Tensile Strength: Yield (Proof), MPa 84
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 350
640
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
580
Melting Onset (Solidus), °C 500
470
Specific Heat Capacity, J/kg-K 990
880
Thermal Conductivity, W/m-K 84
130
Thermal Expansion, µm/m-K 27
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
27
Electrical Conductivity: Equal Weight (Specific), % IACS 65
87

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 1.7
2.8
Embodied Carbon, kg CO2/kg material 23
7.3
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 990
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 17
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 78
250 to 580
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 70
51
Strength to Weight: Axial, points 26 to 39
24 to 33
Strength to Weight: Bending, points 38 to 50
31 to 38
Thermal Diffusivity, mm2/s 50
55
Thermal Shock Resistance, points 9.1 to 14
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.1
72.1 to 79.8
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0
0 to 1.3
Magnesium (Mg), % 89.8 to 92.5
0.25 to 0.65
Manganese (Mn), % 0.13 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.010
0 to 0.3
Silicon (Si), % 0 to 0.3
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.4 to 1.0
0 to 1.5
Residuals, % 0 to 0.3
0 to 0.25

Comparable Variants