MakeItFrom.com
Menu (ESC)

AZ81A Magnesium vs. S20433 Stainless Steel

AZ81A magnesium belongs to the magnesium alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ81A magnesium and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
190
Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 3.0 to 8.8
46
Fatigue Strength, MPa 78 to 80
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 91 to 130
440
Tensile Strength: Ultimate (UTS), MPa 160 to 240
630
Tensile Strength: Yield (Proof), MPa 84
270

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Maximum Temperature: Mechanical, °C 130
900
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 500
1360
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 84
15
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 65
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 23
2.7
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 990
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 17
230
Resilience: Unit (Modulus of Resilience), kJ/m3 77 to 78
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 26 to 39
23
Strength to Weight: Bending, points 38 to 50
21
Thermal Diffusivity, mm2/s 50
4.0
Thermal Shock Resistance, points 9.1 to 14
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 0 to 0.1
1.5 to 3.5
Iron (Fe), % 0
64.1 to 72.4
Magnesium (Mg), % 89.8 to 92.5
0
Manganese (Mn), % 0.13 to 0.35
5.5 to 7.5
Nickel (Ni), % 0 to 0.010
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0