MakeItFrom.com
Menu (ESC)

AZ91A Magnesium vs. 1100A Aluminum

AZ91A magnesium belongs to the magnesium alloys classification, while 1100A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ91A magnesium and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
69
Elongation at Break, % 5.0
4.5 to 34
Fatigue Strength, MPa 99
35 to 74
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 140
59 to 99
Tensile Strength: Ultimate (UTS), MPa 240
89 to 170
Tensile Strength: Yield (Proof), MPa 160
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 360
400
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 470
640
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 73
230
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
60
Electrical Conductivity: Equal Weight (Specific), % IACS 52
200

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 22
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 990
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 280
5.9 to 150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
50
Strength to Weight: Axial, points 38
9.1 to 17
Strength to Weight: Bending, points 49
16 to 25
Thermal Diffusivity, mm2/s 42
93
Thermal Shock Resistance, points 14
4.0 to 7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 8.3 to 9.7
99 to 100
Copper (Cu), % 0 to 0.1
0.050 to 0.2
Iron (Fe), % 0
0 to 1.0
Magnesium (Mg), % 88.2 to 91.2
0 to 0.1
Manganese (Mn), % 0.13 to 0.5
0 to 0.050
Nickel (Ni), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0.35 to 1.0
0 to 0.1
Residuals, % 0
0 to 0.15