MakeItFrom.com
Menu (ESC)

AZ91A Magnesium vs. N08120 Nickel

AZ91A magnesium belongs to the magnesium alloys classification, while N08120 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91A magnesium and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 5.0
34
Fatigue Strength, MPa 99
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
79
Shear Strength, MPa 140
470
Tensile Strength: Ultimate (UTS), MPa 240
700
Tensile Strength: Yield (Proof), MPa 160
310

Thermal Properties

Latent Heat of Fusion, J/g 360
310
Maximum Temperature: Mechanical, °C 130
1000
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 470
1370
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 73
11
Thermal Expansion, µm/m-K 26
14

Otherwise Unclassified Properties

Base Metal Price, % relative 12
45
Density, g/cm3 1.7
8.2
Embodied Carbon, kg CO2/kg material 22
7.2
Embodied Energy, MJ/kg 160
100
Embodied Water, L/kg 990
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
190
Resilience: Unit (Modulus of Resilience), kJ/m3 280
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
24
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 42
3.0
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0
21 to 41.4
Magnesium (Mg), % 88.2 to 91.2
0
Manganese (Mn), % 0.13 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 2.5
Nickel (Ni), % 0 to 0.030
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5
Zinc (Zn), % 0.35 to 1.0
0