MakeItFrom.com
Menu (ESC)

AZ91C Magnesium vs. 6014 Aluminum

AZ91C magnesium belongs to the magnesium alloys classification, while 6014 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AZ91C magnesium and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
69
Elongation at Break, % 2.3 to 7.9
9.1 to 17
Fatigue Strength, MPa 56 to 85
43 to 79
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 96 to 160
96 to 150
Tensile Strength: Ultimate (UTS), MPa 170 to 270
160 to 260
Tensile Strength: Yield (Proof), MPa 83 to 130
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 130
180
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 470
620
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 73
200
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.9 to 12
53
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
180

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 22
8.6
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 990
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 16
22
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 180
46 to 300
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
50
Strength to Weight: Axial, points 27 to 43
16 to 26
Strength to Weight: Bending, points 39 to 53
24 to 33
Thermal Diffusivity, mm2/s 43
83
Thermal Shock Resistance, points 9.9 to 16
7.0 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.1 to 9.3
97.1 to 99.2
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0
0 to 0.35
Magnesium (Mg), % 88.6 to 91.4
0.4 to 0.8
Manganese (Mn), % 0.13 to 0.35
0.050 to 0.2
Nickel (Ni), % 0 to 0.010
0
Silicon (Si), % 0 to 0.3
0.3 to 0.6
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0.4 to 1.0
0 to 0.1
Residuals, % 0 to 0.3
0 to 0.15

Comparable Variants