MakeItFrom.com
Menu (ESC)

AZ91C Magnesium vs. EN AC-47000 Aluminum

AZ91C magnesium belongs to the magnesium alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AZ91C magnesium and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
73
Elongation at Break, % 2.3 to 7.9
1.7
Fatigue Strength, MPa 56 to 85
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
27
Tensile Strength: Ultimate (UTS), MPa 170 to 270
180
Tensile Strength: Yield (Proof), MPa 83 to 130
97

Thermal Properties

Latent Heat of Fusion, J/g 350
570
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
590
Melting Onset (Solidus), °C 470
570
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 73
130
Thermal Expansion, µm/m-K 26
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.9 to 12
33
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.6
Embodied Carbon, kg CO2/kg material 22
7.7
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 990
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 16
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 180
65
Stiffness to Weight: Axial, points 15
16
Stiffness to Weight: Bending, points 69
54
Strength to Weight: Axial, points 27 to 43
19
Strength to Weight: Bending, points 39 to 53
27
Thermal Diffusivity, mm2/s 43
55
Thermal Shock Resistance, points 9.9 to 16
8.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.1 to 9.3
82.1 to 89.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 1.0
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 88.6 to 91.4
0 to 0.35
Manganese (Mn), % 0.13 to 0.35
0.050 to 0.55
Nickel (Ni), % 0 to 0.010
0 to 0.3
Silicon (Si), % 0 to 0.3
10.5 to 13.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0.4 to 1.0
0 to 0.55
Residuals, % 0 to 0.3
0 to 0.25